教师队伍

校聘教授(研究员)

当前位置: 首页 -> 教师队伍 -> 教师名录 -> 校聘教授(研究员) -> 正文
  • 吴衔誉

    性 别 :男

    出生年月:1989年12月

    系 别:机电工程系

    学 位:博士

    职 称:校聘教授/博士生导师

  • 详细资料

     

    详细资料

    通讯地址:福建省福州市福州地区大学新区学园路2号 邮编:350108

    电子邮箱:xwu@fzu.edu.cn

    教育工作经历

    2018/09至今, 福州大学机械工程及自动化学院 机电工程系/机器人工程专业

    2012/08-2018/05,北卡罗莱纳州立大学机械工程硕士、博士

    2011/08-2012/08,普渡大学 电子与计算机工程 硕士

    2007/09-2011/07,电子科技大学 机械电子工程学院 学士

    主要教授课程:微机原理与接口技术、医学数字图像处理

    个人简介

    吴衔誉,现任福州大学机械工程及自动化学院校聘教授、博士生导师,并入选福建省高层次人才(B类)、福州大学旗山学者。于2011年获电子科技大学机械电子工程学士学位,2014年获北卡罗来纳州立大学机械工程硕士学位,2018年获该校机械工程博士学位。自2018年9月起任职于福州大学。长期致力于智能计算成像、精密仪器与测量、神经形态视觉传感系统构建与计算等前沿领域的研究,其工作聚焦于开发新型光学传感与计算成像技术,并成功研制多型精密成像与测量仪器设备,研究成果应用于复合材料无损检测与评估、结构健康监测、无人机遥感成像、安防监控等领域。

    作为项目负责人,承担国家级重点项目课题及多项国家级、部委和省级科研项目,近五年发表高水平学术论文三十余篇,其研制的嵌入式光学成像测量系统已实现应用转化。担任IEEE T CSVT、IEEE TCI、IEEE TIP、EAAI等高水平期刊审稿人,是IEEE、OPTICA会员,并多次受邀在国际学术会议上做报告。带领团队专注于精密光学成像与测量仪器、高速光学成像、计算机视觉检测和人工智能的交叉研究,致力于推动人工智能与计算光学成像技术在高速成像、先进制造、智能检测与医学成像等领域的应用。

    Dr. Wu holds a Ph.D. in Mechanical Engineering from North Carolina State University. He leads a research laboratory focused on advancing the understanding of optical sensing and imaging within precision measurement systems. Dr. Wu's research team is dedicated to the development of cutting-edge optical measurement and imaging systems that integrate hardware and software advancements. His expertise lies in the application of this knowledge to address challenges in non-destructive testing, structural health monitoring, and rapid diagnostics for mechanical systems.

    Dr. Wu's recent research has centered around several key areas, including intelligent computational imaging and measurement and bio-inspired intelligent sensing. His work explores innovative approaches to enhance measurement accuracy, optimize imaging techniques, and enable intelligent sensing solutions.

    研究方向:

    1.精密光学成像与测量仪器

    2.计算光谱/偏振成像

    3.视觉信息检测与人工智能

    4.神经形态视觉传感

    近五年代表性学术成果:

    【期刊论文】

    1. Huang, F., Chen, Y., Wang, X., Wang, S., & Wu, X. (2023). Spectral Clustering Super-Resolution Imaging Based on Multispectral Camera Array. IEEE Transactions on Image Processing, 32, 1257-1271.(CCF-A类, SCI Q1, IF:13.7,Top期刊)

    2. Yao, Y., He, Y., Qi, D., Cao, F., Yao, J., Ding, P., ... & Zhang, S. (2021). Single-shot real-time ultrafast imaging of femtosecond laser fabrication. ACS Photonics, 8(3), 738-744. (SCI Q1, IF:7.077)

    3. Huang, F., Ren, H., Wu, X., & Wang, P. (2021). Flexible Foveated Imaging Using a Single Risley-Prism Imaging System. Optics Express, 29(24), 40072-40090. (SCI Q1, IF:3.833,Top期刊)

    4. Huang, F., Cao R., Lin P., Zhou B., Wu, X. (2023). High-Efficiency Multispectral-Polarization Imaging System using Polarization Camera Array with Notch Filters. IEEE Transactions on Instrumentation and Measurement.(SCI Q1,IF:5.9)

    5. Wu, X., Zhou, B., Huang, F., Lin, P., & Cao, R. (2022). Super-Resolution Thermal Imaging Using Uncooled Infrared Sensors for Non-Destructive Testing of Adhesively Bonded Joints. IEEE Sensors Journal, 22(14), 14415-14423.(SCI Q1,IF:4.325,Top期刊)

    6. Wu X, Zhou B, Wang X, et al. (2023). SwinIPISR: A super-resolution method for infrared polarization imaging sensors via swin transformer. IEEE Sensors Journal, 24(1): 468-477.(SCI Q1,IF:4.5,Top期刊)

    7. Wu X, Chen J, Li P, et al. (2025). Deep learning-based polarization 3D imaging method for underwater targets. Optics Express, 33(2): 2068-2081.(SCI Q2,IF:3.3)

    8. Zhang X, Wang X, Xu Y, et al. Polarization video frame interpolation for 3D human pose reconstruction with attention mechanism[J]. Optics and Lasers in Engineering, 2025, 193: 109046.(SCI Q1,IF:3.7)

    9. Wang X, Zhou B, Peng J, et al. (2024). Enhancing three-source cross-modality image fusion with improved DenseNet for infrared polarization and visible light images. Infrared Physics & Technology, 141: 105493. (SCI Q2,IF:3.4)

    10. Wang X, Chen Y, Peng J, et al. (2024). LVTSR: Learning visible image texture network for infrared polarization super-resolution imaging. Optics Express, 32(17): 29078-29098. (SCI Q2,IF:3.3)

    11. Huang F, Wang X, Chen Y, et al. (2024). Bio-inspired foveal super-resolution method for multi-focal-length images based on local gradient constraints. Optics Express, 32(11): 19333-19351.(SCI Q2,IF:3.3)

    12. Huang F, Chen Y, Wang X, et al. (2024). Joint constraints of guided filtering based confidence and nonlocal sparse tensor for color polarization super-resolution imaging. Optics Express, 32(2): 2364-2391. (SCI Q2,IF:3.3)

    导师指导硕、博士生研究方向:

    (1)精密光学成像与测量仪器研发

    (2)神经形态传感技术开发

    (3)基于人工智能的机器视觉信息处理技术

    (4)计算机视觉与智能控制系统